四川大学雷景新教授团队采用经典Diels-Alder反应制备了可回收、可再加工的固-固相变材料,实现了可持续的热能储存
有机相变材料因其具有较低的成本、较大的相变焓、可调的转变温度、优良的循环稳定性和使用方便等优点而广泛用于建筑保温材料、纺织工业、智能包装、太阳能存储、温室大棚、电子产品冷却、废热回收和一些新兴领域。常用的有机相变材料,例如石蜡、脂肪醇、聚乙二醇等,在熔融放热吸热过程中常常面临着泄漏的问题。因此,研究者设计出了多种形状稳定型或固-固转变型相变材料,以克服使用过程中存在泄漏的问题。然而,这些相变材料难以回收且不具备再加工性,造成资源浪费和环境污染。目前,一个挑战是制备可回收、可再加工的固-固相变材料,以用于温度管理和可再生能源储存。此外,有机相变材料的热稳定性或储能容量仍需提高。
图1 (a)热可逆固-固型相变材料的制备、储能和再回收机理示意图,(b)纯PEG8K和DC-PCMs在90℃加热不同时间的数码照片,(c)纯PEG8K和DC-PCMs的红外光谱图,(d)DC-PCMs在50℃条件下DMF中浸泡72 h前后照片。
近年来,动态共价键在常规条件下具有较好的稳定性,而在一定条件下具有可逆性,因此有望制备可再回收和再加工的热固性材料。近日,四川大学高分子材料工程国家重点实验室雷景新教授团队结合动态键化学和聚乙二醇相变特性,采用经典Diels-Alder反应制备了聚乙二醇基固-固相变材料(DC-PCMs)。DC-PCMs具有稳定的化学交联结构,使其具有优异的稳定性,在90°C时没有泄露现象发生。同时,化学交联键的存在使制备的DC-PCMs具有较好的力学性能,能满足多种场合的应用。XRD和偏光照片证明了其具有优异的结晶能力,DSC结果表明制备的相变材料的较宽的温度范围内储存和释放热能,且其焓值高达107.2 J/g。
图2 (a)DC-PCMs的拉伸应力-应变曲线,(b)DC-PCMs储存模量随温度的变化曲线,(c)不同温度下DC-PCM8K的应力松弛曲线,(d)根据阿伦尼乌斯定律拟合的DC-PCM8K在不同温度下的松弛时间,(e)原始和再加工DC-PCM8K的拉伸应力-应变曲线,(f)原始和再加工DC-PCM8K的DSC曲线,(g)DC-PCMs再加工流程图,(h)DC-PCM8K的固态塑性示意图。
由于制备的DC-PCMs是由Diles-Alder反应产生化学交联点的,该交联点在一定条件下可以可逆的断裂和重新形成。因此,Diles-Alder反应的高温可逆性赋予了DC-PCMs材料独有的可再加工性和固态塑性,在一定条件下(120°C和10 MPa)DC-PCMs可以被重新回收和加工成不同形状。与传统的相变材料相比,这种热处理回收和再塑性工艺非常方便,使DC-PCMs在储能应用方面具有巨大的优势。在经过多次热加工之后,改材料的力学性能和储能性能几乎不变,证明了其优秀的再加工性。同时,改材料具有良好的热稳定性,其初始分解温度大于280°C,远高于其再加工温度。该聚合物分子设计策略可扩展到其他动态化学键体系和相变功能组份,有望制备多种可回收的储能材料,用于可再生能源的储存,满足人们可持续发展的愿望。同时,DC-PCMs的整个制造过程成本低廉,工艺简单,适合大规模生产和应用。
论文链接:
https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta08368e#!divAbstract
相关进展
深圳大学饶峰特聘教授在Science发表论文评述相变存储材料的液-液转变机制
中科院苏州纳米所张学同研究员团队在气凝胶相变隐身复合材料领域获进展
复旦大学唐萍教授课题组在刚-柔嵌段高分子体系的相变动力学路径研究中取得重要进展
高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn
关注高分子科学技术 👉
长按二维码关注
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina
(或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。
这里“阅读原文”,查看更多